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Abstract. In this paper we study a recent generalization of the XY-model in two dimensions by using
Monte Carlo method. The vortex density, specific heat, energy and critical temperature are obtained.
Some results are compared with approximated analytical calculations. The nature of the phase transition
as the generalization parameter varies is discussed.

PACS. 05.50+q Lattice theory and statistics – 75.10.Hk Classical spin models – 75.40.Mg Numerical
simulation studies

1 Introduction

One of the simplest models supporting topological ex-
citations in the spin field is the two-dimensional (2D)
planar rotator model H = −J

∑
i,j(S

x
i Sx

j + Sy
i Sy

j ) =
−J

∑
i,j cos(φi − φj), where J > 0 is the ferromagnetic

coupling constant, φi are the angular coordinates of spins
�Si = (Sx

i , Sy
i ) = (cosφi, sinφi) and i, j indicate near-

est neighbor sites of a L × L square lattice. It is well
known that this model exhibits the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition [1–3] at a temperature
TBKT due to unbinding of vortices. Generalizations of
this model have also attracted much interest in the two
last decades, mainly in connection with the nature of
the phase transitions. Such generalizations can be writ-
ten as Hgpr = −Σi,jV (φi − φj) = −∑

i,j V (Φ), where
Φ = φi − φj . Domany et al. [4] have considered a gener-
alization of the form V (Φ) = 1 − cos2p2

(Φ/2). For p = 1,
this Hamiltonian reduces to the interaction of the planar
rotator model while for large p, it resembles the Hamilto-
nian of the n-state Potts model with a n proportional to p.
Their conclusion was that this model exhibits BKT tran-
sition for small values of p and first order phase transition
for relatively large values of p (p2 > 10). This change in
the nature of the phase transition for large p may be asso-
ciated with a large number of vortices that arises almost
instantaneously at the transition point [5]. It is in agree-
ment with Minnhagen’s proposal [6,7] that in the limit of
high particle densities the 2D Coulomb gas model, which is
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the dual to the planar rotator, would undergo a first order
transition. On the other hand, some studies, mostly based
on renormalization group analysis, have contested the first
order transition [8,9] predicted in the generalized model
of references [4,5]. However, a recent rigorous proof [10]
has shown that various SO(n)-invariant n-vector models
with interactions which have a deep and narrow enough
minimum have a first-order transition in the temperature.
A possibility of the disorder-induced first order transition
in the planar rotator model (V (Φ) = Jij cos(φi − φj))
was also demonstrated by some calculations [11,12], in-
cluding the discretized Migdal-Kadanoff renormalization
group approach [12].

Another model described by the Hamiltonian H =
−J

∑
i,j(S

x
i Sx

j + Sy
i Sy

j ) is the XY-model. The difference
in relation to the planar rotator is the number of spin
components; in the XY-model the classical spin vector �Si

is given by (Sx
i , Sy

i , Sz
i ), being, therefore, parametrized by

two scalar fields, the azimuthal (φi) and polar (θi) an-
gles �Si = (sin θi cosφi, sin θi sin φi, cos θi). In the sense
discussed above, it should also be interesting to study
generalizations of this system. Recently, Romano and
Zagrebnov [13] have proposed a generalized XY-model de-
fined as follow [13–15]

HGen
XY = −J

∑

〈i,j〉
(sin θi sin θj)q cos(φi − φj), (1)

where q ∈ N is the generalization parameter. Note that
the emphasis of the generalization is on the variables θi

and not on Φ as in the planar rotator. Of course, this
Hamiltonian has a more complicated dependence on the
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spin components as one can see below

HGen
XY = −J

∑

〈i,j〉
[1 − (Sz

i )2 − (Sz
j )2

+ (Sz
i Sz

j )2](q−1)/2
(
Sx

i Sx
j + Sy

i Sy
j

)
. (2)

For q = 1, Hamiltonian (1) recovers the well known
XY-model. Our interest is, therefore, in the cases with
q > 1.

Recent analytical calculations [14] considering the
Hamiltonian (1) and based on the continuum theory show
that out-of-plane vortex structures (in which the out-of-
plane region is restricted to a small core region at the
vortex center) are unstable and then, only planar vor-
tex excitations are present. It is in agreement with the
usual XY-model. Another result of the continuum ap-
proach indicates that the magnon density decreases as
exp(−√

q), but the planar vortex energy should not be
affected. However, as shown by Curie et al. [16], the inter-
action between soliton structures and magnons provides
the sharing mechanism of energy and degrees of freedom
among the nonlinear excitations of the system and there-
fore, it may exist the possibility that, as magnon den-
sity decreases, the vortex density should increase. In this
respect, it is expected that the vortex density may in-
crease as q increases. Besides, analytical calculations based
on some approximated methods such as Mean Field [13]
(MF), Two-Site Clusters [13,15] (TSC) and Self Consis-
tent Harmonic Approximation [14] (SCHA), indicate that
the critical temperature decreases as q increases. This is
another indication that the vortex density should also de-
pend on q. Here we use classical Monte Carlo algorithms
to estimate static thermodynamic quantities as a function
of the exponent q for several values of temperature T ,
with emphasis on the internal energy e = 〈H〉/N , specific
heat c = (〈H2〉 − 〈H〉2)/(NkBT 2), magnetic susceptibil-
ity of the in-plane spin components, χ = (χxx + χyy)/2,
where χαα = 〈(∑i Sα

i )2〉/N , as well as the vortex densi-
ties (N is the number of spins). The critical temperatures
obtained here are compared with analytical calculations of
reference [14]. Our motivations for the present work are,
then, twofold: first, to study the static vortex behavior
in more complicated spin systems and check the validity
of the approximations used for getting analytical calcula-
tions of references [13,14]. Second, to check the possibility
of changing the nature of the phase transition (BKT to
first order) as the parameter of generalization q increases.

2 Monte Carlo method

We have used a hybrid Monte Carlo approach which in-
cludes cluster and single spin updates to calculate some
thermodynamic quantities for the model Hamiltonian de-
fined by equation (2). Each Monte Carlo Step (MCS) in
our scheme consists of one Wolff [17,18] update of pla-
nar components of the spin followed by four Metropo-
lis [19] updates of all the three components and ten
overrelaxation steps which changes the configuration but

keep the same energy [20,21]. This hybrid algorithm was
used to prevent critical slowing down and correlations
between different configurations [21–25]. The simulations
were performed considering square lattices with periodic
boundary conditions (using mostly the lattice sizes L =
16, 32, 48, 64, 80, 96). Fixing the generalization parameter
q we start with a completely random configuration in
the lowest temperature and then 5000 MCS were used
for equilibration at each temperature and 100000 MCS
were used to get thermal averages. After the averages are
obtained for one temperature, the last configuration is
used as the initial one for the next. We also did some
simulations varying the generalization parameter q for a
given temperature T using the same procedure described
above. Most of the results presented here are for lattice
size L = 96, and other sizes were mainly used to check
for significant lattice-size dependence associated with the
results. In the figures, the error bars are not shown when
the statistical errors are smaller than the symbols. In our
notation, the symbol TBKT will be used only for the usual
XY-model, i.e., for the case with q = 1.

3 Vortex density

Since the thermodynamic quantities have a fundamental
dependence on the topological excitations, our first task is
to investigate if the exponent q causes changes on the vor-
tex density. Such quantity was obtained based on the work
of reference [26]. It is calculated as the thermodynamic
average of the absolute value of the vorticity summed
over the lattice. Indeed, on going around each plaquette
in the lattice, the difference in the angle φ of adjacent
spins is summed. When this sum is equal 2π (more pre-
cisely close to 2π, taking into account possible numerical
errors) there is a vortex in this plaquette and if it is −2π
there is an antivortex. We have considered only vortices
(antivortices) with topological charge Q = 1 (Q = −1),
since they are energetically favorable. Figure 1 shows the
vortex (antivortex) density ρv as a function of the pa-
rameter q for temperature T = 0.90J , which is above the
critical temperature of the usual XY-model (for q = 1,
TBKT = 0.699J , see Refs. [21,27]) for some lattice sizes.
Note that the vortex density increases considerably as q
increases. In general, for temperatures above the critical
temperature TBKT , the data are well fitted [28] by the
following expression

ρv(T ) ≈ ρ0 − α(T ) exp(−√
q), (3)

where we have used the lattice spacing a = 1. The values of
ρ0 and α(T ) for several lattice sizes are shown in Table 1.
There is no appreciable system-size dependence on the ex-
pression and the numerical pre-factor in the exponential
term before

√
q is approximately 1 for all sizes. Expression

(3) takes in consideration both vortices and antivortices.
The density increases monotonously up to the maximum
value ρmax

v ≈ 0.32, which is independent of the tempera-
ture, achieved in the limit q → ∞. A simple argument [29]
shows that the maximum vortex density possible in the
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Fig. 1. Vortex density as a function of the exponent q for
T = 0.90 J and several values of L. The curve is given by
equation (4) and correspond to the fit for L = 96 with the
values given in Table 1.

Table 1. Size dependence of the parameters ρ0 and α(T ). The
errors are due to fit uncertainties.

L ρ0 α(T )

16 0.31768 ± 0.00247 0.63589 ± 0.01485

32 0.31724 ± 0.00244 0.62641 ± 0.01472

48 0.31723 ± 0.00242 0.6253 ± 0.01459

64 0.31726 ± 0.0024 0.62499 ± 0.01443

80 0.31724 ± 0.0024 0.62477 ± 0.01446

96 0.3173 ± 0.00242 0.62545 ± 0.01457

square lattice is 1/6 and hence the saturation density of
vortices and antivortices is 1/3 = 0.333, which is very
close to our result for ρmax

v . For the conventional 2D XY-
model, this value is achieved in the high-temperature limit
(T → ∞). Here, it is achieved in the limit q → ∞, valid for
any finite temperature above the critical one, indicating
that the parameter q is, to some extent, similar to ther-
mal disorder. In fact, as q increases, vortex density also
increases while magnons tend to be suppressed (the corre-
lation length decreases and the magnon density decreases
as [14] exp(−√

q)). Hence, it is reasonable to expect that
the critical temperature must also decrease. This can have
a simple explanation: above the critical temperature, the
correlation length ξ(T ) must be interpreted as half of the
mean separation between vortices, i.e., ρv � (2ξ)−2. Since
ρv increases with q, magnon excitations should become
unfavorable as the vortex density (or q) increases. Note
that the factor exp(−√

q) is present in both vortex and
magnon densities, increasing the first and decreasing the
second. In the limit q → ∞, the system may contain
only vortex excitations. It means that in the high-q limit,
the system must be disordered even at very small tem-
peratures, and as a consequence, the critical temperature

Fig. 2. Vortex density ρv versus kBT/J for L = 96. Note that
the number of vortices increases considerably for sufficiently
large values of q, even for relatively small temperatures.

must be very low. We also plotted the vortex density ver-
sus temperature for several values of q in Figure 2. Note
that, while for the usual model (q = 1) the vortex density
increases only gradually with temperature, this density
appears to exhibit a sharp jump at a temperature T (q),
mainly for q 	 1. Then, for q sufficiently large, vortices
suddenly appear in great numbers at some temperature
T (q) and following Minnhagen [6,7], Domany et al. [4]
and Van Himbergen [5], it may be an indicative that a
first order transition takes place. Indeed, the fugacities of
the vortices increase until the vortex pairs start overlap-
ping at low enough temperatures when they are supposed
to be tightly bound. In fact, it was shown both by ana-
lytical calculations (with the help of the generalization of
the Kosterlitz renormalization equations [6,7]) and Monte
Carlo simulation [30] that this also causes the transition
to become first order. As elucidated by Korshunov [11],
the Minnhagen criterion for the occurrence of first order
transitions in the generalized planar rotator models means
that [∂2V (cos(Φ))/∂Φ2] |Φ=0 /[V (cos(π)−V (cos(0))] 	 1.
However, the models considered here also supports a high
vortex density at a temperature T (q) and do not obey the
Korshunov relation. Our next step is to calculate other
thermodynamic quantities as well as the critical temper-
ature Tc(q).

4 Influence of q on the critical temperature
and other thermodynamic quantities

Now we consider the effects that the exponent q causes on
the critical temperature Tc, the energy e and specific heat
c. Firstly, we would like to mention that our results for Tc

were obtained considering the same techniques used for
the conventional 2D XY-model (i.e., considering a BKT-
like phase transition).
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Table 2. Critical temperature estimated by the methods described in the text. The errors correspond to statistical deviations.

q Binder’s cumulant η Υ FSS of Υ SCHA
2 0.687 ± 0.003 0.665 ± 0.003 0.662 ± 0.001 0.653 ± 0.002 0.848
3 0.656 ± 0.003 0.637 ± 0.001 0.632 ± 0.002 0.624 ± 0.003 0.700
4 0.631 ± 0.002 0.615 ± 0.002 0.613 ± 0.001 0.604 ± 0.001 0,595
5 0.609 ± 0.006 0.599 ± 0.001 0.598 ± 0.001 0.592 ± 0.002 0.518

Fig. 3. Cumulant of magnetization for q = 5 for several lattice
sizes. The inset show the crossing region in more details.

4.1 Influence on critical temperature

To locate the critical temperature we apply three differ-
ent methods usually considered for Berezinskii-Kosterlitz-
Thouless (BKT) like phase transitions, namely the size
dependence of Binder´s fourth order cumulant, suscepti-
bility exponent η and helicity modulus Υ . The numerical
values of Tc obtained by these methods for some values of
q are summarized in Table 1. They are also compared to
the SCHA method [14,31,32].

4.1.1 Binder´s fourth order cumulant

A rough estimative of Tc could be obtained by using the
size-dependence of Binder’s fourth order cumulant [33,34,
23,24] UL, defined as follows

UL = 1 − 〈(M2
x + M2

y )2〉
2〈M2

x + M2
y 〉2

, (4)

where Mx and My are the in-plane magnetization com-
ponents. For any lattice size L, the asymptotic values are
UL(T 
 Tc) = 0.5, UL(T 	 Tc) = 0. At the critical tem-
perature, UL is approximately independent of L, hence,
Tc can be estimated from the crossing point of curves of
UL for several L. However, for large values of q the curves
start to overlap in a large temperature range, which makes
the estimative of the critical temperature by this method
very imprecise, as can be seen in Figure 3 (for q = 5).
The results for the critical temperature obtained by this
method are given in Table 2.

Fig. 4. Log-log plot of planar susceptibility as a function of
the lattice sizes for q = 5 and some values of temperature. The
slope of the curves is 2 − η.

4.1.2 Susceptibility exponent η

Another method that could be used to estimate the critical
temperature for BKT-like phase transitions is the finite-
size scaling of the planar susceptibility as was used by
Cuccoli et al. [27] and Wysin and co-workers [23,24]. It
is expected for the XY and PR models that the in-plane
magnetic susceptibility (χ) has a power law behavior near
and below the critical temperature according to

χ ∝ L2−η, (5)

were η is the exponent for the in-plane spin correlations
below Tc (for details see Ref. [27]). We can calculate the
exponent η, as a function of temperature, by fitting [28]
the susceptibility for several lattice sizes to the above ex-
pression for each temperature. For XY and PR models Tc

is estimated when η = 1/4. Here we assume that even for
the generalized XY models (with q �= 1) the exponent η is
equal to 1/4 at critical temperature, and that this power
law behavior still holds. In Figure 4 we show the log-log
plot of the susceptibility versus L for q = 5 and several
temperatures. The slope of the curves is 2−η. In Figure 5
(also for q = 5) the exponent η, obtained by fitting the
data to equation (5), is shown as a function of the temper-
ature. The results for the critical temperature obtained by
this method are given in Table 2.

4.1.3 Helicity modulus Υ

The helicity modulus is a measure of the resistance to
an infinitesimal spin twist ∆ across the system along one
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Fig. 5. Temperature dependence of η. The critical temperature
is estimated when η = 1/4.

coordinate, expressed in terms of the dimensionless free
energy, f = F/J ,

Υ (T ) =
1
N

∂2f

∂∆2
. (6)

For the generalized XY-model, defined by equation (1),
one could show that

Υ (T ) =
1
2
〈H〉

− 1
NkBT

〈⎡

⎣J
∑

〈i,j〉
(sin θi sin θj)q cos(φi − φj)êij · x̂

⎤

⎦

2〉

,

(7)

where 〈H〉 = 〈HGen
XY 〉/N is the energy per spin (e) and êij

is a unit vector pointing from site i to site j. According to
renormalization-group theory, the helicity modulus in an
infinite system jumps from the finite value (2/π)kBTc to
zero at the critical temperature. Therefore, an estimative
of the critical temperature could be obtained simply by
locating the intersection of Υ as a function of T and the
straight line

Υ =
2
π

kBT, (8)

as shown in Figure 6. Better results are obtained by apply-
ing finite-size scaling analysis. An useful scaling expression
is [23,35–37],

πΥ

2kBT
= A(T )

[

1 +
1

2 ln(L/L0)

]

, (9)

with A(T ) and L0 being fitting[28] constants. This expres-
sion is exact at T = Tc, with A(Tc) = 1 (see Ref. [23] and
references therein). So, we can find Tc by locating the tem-
perature where A(T ) = 1. The function A(T ) is shown in
Figure 7. The results obtained are also shown in Table 2.

Fig. 6. (a) Helicity modulus as a function of temperature for
several lattices sizes for q = 3. (b) Helicity modulus as a func-
tion of temperature for L = 96 and q = 2, 3, 4 and 5.

Fig. 7. Fitting parameter A(T ) as a function of temperature
for some values of q.
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Fig. 8. Specific heat for q = 3 and several lattice sizes. Note
that finite-size effects are very pronounced.

Fig. 9. Specific heat maximum (cmax
v ) for some values of q

versus L2.

4.2 Energy and specific heat

Figure 8 shows the specific heat for the simulated lat-
tice sizes and q = 3. In contrast to what happen in the
usual XY model (q = 1), where finite-size effects are very
small [27], these effects become considerable as q increases.
In fact, the specific heat peak moves toward lower temper-
atures and becomes narrower and higher as L increases.
The high values of the specific heat peak indicate the pos-
sibility that a first-order phase transition takes place. Re-
ally, for this type of phase transition, it is expected that
the maximum value of the specific heat (cmax

v ) has a pro-
portionality relation with the volume of the system [34],
i.e., cmax

v ∝ Ld where d is the system dimension (in our
case d = 2). In Figure 9, we plotted the specific heat
maximum [38] versus L2 for some values of q. Note that,
although the cmax

v increases considerably with L, it does
not have exactly a linear dependence with L2. Tests were
also made using smaller temperature steps, but the re-
sults are very similar. So we can not be conclusive about

Fig. 10. (a) Energy per spin versus temperature for some
values of q and L = 96. (b) Energy for q = 5 and several
lattice sizes.

a possible change of the nature of the phase transition
using these considerations. Concerning still the specific
heat, we remark that its maximum is located above the
critical temperature for the usual XY-model [39] (approx-
imately ten percent above TBKT ). This may be qualita-
tively understood in terms of a sequential unbinding of
vortex-antivortex pairs in multiple-bound clusters. How-
ever, as q is increased, the difference between the position
of the specific heat peak and the critical temperature de-
creases slowly. Our results show that for q = 2 the specific
heat maximum (for L = 96) is located about 8.7% above
the critical temperature (obtained by FSS of the helicity
modulus) while for q = 5 it is located about 4.7% above Tc.

In Figure 10 the average energy per site e is plotted
as a function of T . Again, for sufficiently large values of
q, there is a near discontinuity in e exactly at the same
point where the specific heat exhibits a large and sharp
peak. In fact, this is approximately the same point where
the vortex density exhibits a sharp jump.

Again, to check the possibility of a first-order phase
transition we also performed simulations increasing tem-
perature and then decreasing, in order to look for
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Fig. 11. (a) Size dependence of the hysteresis curve for q =
3. Note that hysteresis persist even to the largest lattice size
simulated. (b) Hysteresis curves for q = 1, 3 and 5 and L = 96.

hysteresis effects. In fact, we observe that as q increases
hysteresis starts to appear and persists even if the num-
ber of MCS used for equilibration (not shown here) or the
lattice size (see Fig. 11) are increased. However, the his-
tograms of energy does not exhibit double peak structure.
In summary, although our results can not be conclusive,
they suggest that the hysteresis observed in the energy
(see Fig. 11), the jump in the vortex density, the peak in
the specific heat and the discontinuity in the energy, all
happening at the same point may be an indicative that
the system also exhibits a first order transition [5] for large
enough values of q.

5 Discussions

In this work we have performed MC simulations for study-
ing an interesting generalization of the 2D XY-model. The
critical temperature Tc(q), the vortex density, internal en-
ergy, specific heat and magnetic susceptibility were ob-
tained. The values of Tc were calculated by using three
methods based on the BKT transition. We have to say,

however, that this study is only a first step in direction to
a more elaborated theory. Really, lacking a detailed theory
for these generalized XY-models, we had to use expres-
sions and methods available for the standard 2D model.
However, the high vortex density (see Sect. 3) and the
results of Section 4 also suggest that a first order transi-
tion at a temperature slightly above Tc(q) calculated here
may occur for large enough q. Hence, our results give some
support to the idea that the generalized model (1) in two
dimensions may undergo two distinct transitions due to
the influence of strong disorder (large number of vortices
and strong out-of-plane fluctuations for high values of q).
It is not conclusive, but if the first order transition really
happens, the critical point of this transition should be very
near the one calculated using BKT methods, mainly for
q 	 1. This small difference may be the cause of the ab-
sence of a clear identification of this point in these compli-
cated spin models, which contain three spin components
interacting in a nontrivial way. It is possible that vortices
alone are sufficient to account for these two kinds of tran-
sitions but, of course, in a qualitatively different manner.
The BKT transition is based on the vortex-pairs unbind-
ing and the first-order transition, in this case, would be
associated with a large number of vortices that appear in
the system instantaneously. These two phenomena arise
almost at the same temperature. For instance, the case
q = 5 in Figure 2 shows clearly this process. As the tem-
perature is increased from zero, the vortex pair density
starts to grow simultaneously with an increase of the size
of the pairs. There is only a few vortices in the tempera-
ture range 0 < T < 0.6J . At T ≈ 0.6J , vortices start to
appear everywhere and the vortex density changes drasti-
cally from almost zero to almost saturation (ρmax

v = 1/3).
After that, the process becomes extremely complicated.
As vortices become denser, there is less space to put in
new pairs and hence the average pair size decreases for
sufficiently high temperature. With many vortices in the
lattice, the process of creation and annihilation of pairs
may become extremely relevant causing another type of
transition. To conclude, we would like to mention that
these generalized models may be also useful to give some
insights about the static and dynamical behavior of sys-
tems containing a high vortex density. For instance, mag-
netic 2D systems with a percentage of nonmagnetic impu-
rities seem to exhibit this characteristic [23–25].
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